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CALCULATION OF A HYPERSONIC VISCOUS GAS FLOW AROUND
A SPHERE NEAR THE STAGNATION LINE

B. M, Pavlov

ABSTRACT: A steady hypersonic flow of a viscous heat-
conducting compressible gasis considered on the basis of
Navier-Stokes equations written in spherical polar coor-
dinates, Itis assumed that the gas is perfect and mon-
atomic and thatits volume viscosity is equal to zero, while
the viscosity and heat-conductivity coefficients are pro-
portional to the square root of the absolute temperature
T. An approximate local self-similar solution is used,
which makes it possible to obtain flow characteristics in
the stagnation line region, A nonstationary system ob-
tained by using an explicit difference scheme is integrat-
ed numerically in the region from the undisturbed flow
down to the body and passing through the shock-wave zone,
As a result, the structures of the shock layer and shock
wave are determined. The results are presented of anu~
merical calculation of flow past a thermally insulated
sphere at M_ =10, v =5/3, Pr =3/4, with Re =50, 100,

500, and 1000 characterizing the transition from a rare-
fied toadense gas with gradual formation of a thin shock
wave, Diagrams of pressure, velocity, and density dis-
tributions are included. It is stated that the computation
procedure outlined here may be used for calculations of
plane as well as axisymmetrical bodies with nose section
of nearly cyclindrical or spherical shape and with thermally
insulated or cool surface,

i

hypersonic flow of viscous gas around a sphere. Use is made of an approximate ~ ~
local self-similar solution, which makes it possible to obtain flow characteris-

tics near the stagnation line, An explicit difference scheme is used to integrate

the nonstationary system in a region extending from the undisturbed flow and up

to the body with transition through a shock-wave zone; no assumptions are made

here regarding the behavior of the flow in this region. The structure of the shock

layer ahead of the sphere, including the shock-wave structure, is determined as
a result, '

This paper uses the ""developed flow" method for calculating steady state ;/68* |

*Numbers in the margin indicate pagination in the foreign text,



Examples of calculations are presented for flow around a thermally-insu-
lated sphere at M_ =10, and Reynolds numbers 50, 100, 500 and 1000,

1. Statement of the Problem

We are considering the calculation of steady-state flow around a sphere in
a homogeneous hypersonic flow of viscous, thermally-conducting, compressible
gas., The starting equati for the problem are Navier-Stokes equations writ-
ten in spherical polar c dinates (see, for example [1]). It is assumed that the
gas is perfect and monatomic, for which the volume [bulk] viscosity is zero, while
the viscosity u and the thermal conductivity k are proportional to the square root
of T, (the absolute temperature). The ratio of specific heatsy =c / c, and the

Prandtl number Pr = cpu/ k are assumed to be constant, As a result We have a

closed system of equations with respect to the following desired functions: u, v
which are the radial and tangential components of the velocity, p - the density,
p - the pressure, h = cpT - the enthalpy and u - the viscosity,

The boundary ‘conditions of the problem are those prevailing on the surface
of a sphere at r = r, (Fig. 1) and the conditions in the undlsturbed incident flow

M, Rew, Un, Doy Prne

We assume that the conditions on the sphere surface assure flow adhesion
to that surface:

u(rw,B) O v( O) 0 (1)

We also assume that the sphere is thermally 1nsu1ated

Q———h(r,,, 6) =0. @)

For the case of very small Reynolds numbers (when the gas is sufflclently rare-
fied. but the continuous-medium hypothesis is still valid) conditions (1) and (2)
must be replaced by slip and temperature jump conditions.

Since it is assumed that the flow far from the body is homogeneous and un- -

disturbed, we have the following conditions at r — + «

u(r 0);— ,gcose v(r 9) U s'mO
p(r 9)—p,,, p(r 6) =P=. (3)

The boundary—value problem for complete Navier-Stokes equations stated
in this manner can be solved numerically only with extreme difficulty, We shall
follow an approximate method for solving this problem suggested by Probstein



and Kemp [1], According to this method the,‘N Vler‘ Stoke
sonic flow in the shock layer ahead of a blunt body can k ! ‘page
67) and then, using the eoncept of local
self-similari it can be reduced to a

tions, The
thus obtaine
vicinity of th
which passes only through the for-

2

ward stagnation point on the body.

The following form of the local
self-gimilar solution was used when
changing to ordinary differential equa-
tions

;u(r, 6)_.uo(r)cose v(r 9) vo(r)sme p(r 0) = po(r).f
§ B (r, 0) = ho(r) cost®, p(r, 8) =po(r)cos 0,
‘ p(r, 8) = p,(r) cos’ﬂ-!»pz (r)sin®8. ‘ 4)

According to [4], this form of solution in the series expansion of the flow param-
eters near axis with 6 =0 in powers of siné corresponds to the so-called "first
cutoff, "

The system of ordinary differential equations derived in [2] has the form
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System (5) is completed by writing
enthalpy and viscosity ‘
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The system described by Eqs.’ (5) and (6) is written in dimensionless variélbles,
which are defined as follows
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It should be noted that the energy equation in Egs. (5) and (6) is replaced by
Becker's integral h + ﬁz/ 2 = A, which is applicable when Pr =3/4 and only for
thermally insulated surfaces of the body.

System (5)-(6) will be solved numerically over a finite interval with re-
spect to variable r, assuming that the disturbances produced by the body do
not in practice extend past some specified distance r_ from the center of the

sphere, This is equivalent to'] postulating ‘the possibility of applying conditions
prevailing at infinity to a sphere with radius r o

The dimensionless boundary conditions (1)-(3) have the form

=1 =1p= pz-pw.p Peo | when T =ru| (8)

=0 ‘W}‘lep,t r=ry=1. (9)
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In addition, by virtue of Becker's integral and of the method used for transfor-
mation to dimensionless quantities, we obtain at the surface of the body

¥
.~

P =1, p(=1, A=A (10)

Since the velocity field at infinite distance from the body is homogeneous and
there are no rates of deformation of the flow to be considered, we can use the
formulas for an ideal inviscid gas for the undistur]_oed incident flow:
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As shown by calculatmns performedéby Levmsky an Y osh;hara [2], the problem
, P 3 ofc

[1] develops the method of a "mscous” shock layer in which a nf1n1tes1ma11y
thin shock wave serves as the outer boundary, with Hugoniot relationships pre-

theory, where it is assumed that V1scos1ty:1s appreciable Onlyf;n the shock-wave
region and in the boundary layer at the body, and that these two thin layers are
separated by a region of almost inviscid flow,

the stagnat:lon line with sufficiently h1gh accuracy (it should be noted, however,
that this was checked only for the case of a "viscous'' shock layer).

In this paper, as in [2] we integrate directly while assuming transition
through the shock-wave zone, However, we make no assumptions as to the be-
havior of the flow between the undisturbed flow and the body, The numerical
computation presented here makes it possible to overcome difficulties encount-
ered in the Levinsky-Yoshihara paper.

2. The Numerical Solution

The problem formulated in Sec., 1 is a two-point boundary-value problem
for a nonlinear system of ordinary differential equations. It was solved in [2]
by direct integration assuming transition through a shock wave, However, the
solution involved great difficulties due to instability of the integration process,
which was performed only in one direction, i,e., from the undisturbed flow to
the body, or conversely. Hence it was necessary to integrate Eqs. (5)-(6) sim-
ultaneously in two directions, i.e., along the flow and against it, starting from
both ends, i.e., from the undmturbed flow and from the body, Then both solu-
tions had to be j ined in some point between the body and the shock wave by se-
lecting suitable initial conditions at both of the integration origins.

Paper [4] points out the cause of the instability operating during integration
in the direction of the flow: the differential equations which describe the shock-
wave structure have a singular point (a saddle point) directly behind the wave.

It was noted that this disappears with a reduction in Re (for example, when Re =
=10), at which point integration along the flow up to the surface of the body be-
comes practically possible, When the integration origin was at the body, an in-
stability also appeared, this time at the approach to the shock wave, The se-
lection of the suitable initial conditions at both integration origins and the sub-
sequent joining of soluti ich agree with each other is highly laborious and
obviously affects th We also found [5] this on repeating one of the
calculations (Re =1 d in [2]: one must specify:
tial data in order to achieve even a moderate accuracy in

ng the solutions.

yrecisely the ini-



Now we are suggesting another method for solving this boundary-value

~ problem; this method does not require the coupling of solutions and laborious
selection of missing initial data. We add to the differential equations of system
' (5)-(6) terms with derivatives of u, v, p and Py with respect to time t (this time

is not the same as the
we solve the resulting
od starting from cer

1me in the unsteady Navier-Stokes system) and
ate system thus obtained by a difference meth~
conditions at t = 0 and with boundary conditions

(8)- (10) Wthh are deflmtely fixed in time, If there exists a smgle steady-state =

. _ing the solutmn as I — «, The steady-state flow parameters Wlu then be o‘btalned S

asa result of tdeveloped flow, ' |

The unsteady-state system correspondmg to (5)-(6) has the form iﬂ(the,bars
over dimensionless quantities are now dropped)

B g n,
Lo +u or + P o +N2 P (u+v).. 0' (2

: Va‘u du 4 0 dv
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._%_»:g__ _opy pv(u+u) 0 5
h=A— (16)
.
=3 (17)
2 y o (18)



This system will be solved by the method of finite differences in the region
il=r=r_, t>0, We draw on the plane of 1ndependent variables (r, t) a I‘ld

,k,n=0,1, 2, ..., where
k —(r —1)/k The des:tred functions in the nodal points are denoted by fgﬂ

with nodes r =1 + nl, t=nmm=0, 1

To approximate the derivative in Egs, (12)-(15), we use an explicit differ-
ence scheme suggested in [6] (henceforth

r_ T T o
it O bt i Re)"

— e - e -
u’r:l v = ""gum(um-i-l"‘um—l) + _ L—'

| + 32: {2*110 S + ) (why, —un) — i

|
— 0.5 (4 -+ prc) (4 — - )]+ Bt (Vg — OY) —

_ n_ “ntd
— 2y, (M gy — B2Y, )} e (19)
s T . | -
U:x+ = U — Bt (Vmg — Ur)
| m+l + ym)( m-1 v:z) - ;
|
1— 051, + 5 ) 7 —on )1+ —o(u+ oL, i
AP E o e ’!!,, e
B = o — B (0 — P F 0 (afa — 23] —~
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PR =pia §<p2 et — PR — Tlpo(u + Bl (22)

The values of'f are compubed from Eqs (19)-(22) in the direction un-

disturbed ﬂow«»body, using
and p2 are known only for the u;

ions, (8). Since the values of p
flow (when r =

ﬁieau(l) = v(l) 0 they must be calculated from the equatmns g{-’ = -

| P =pk — Eok (k-2 —4ui_1), Phx = pox + E(Pa2— 4P5a1 +3p00). - (23)




Then Y£+1 are calculated in the opposite direction from the expressions
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(29)

(26),

(27)

The values of hm’ P and P, are found from Egs. (16)-(18). The final

solution at the (n + 1)th time-dependent film is given by

fat=0s@t 1T, 1=| ,
i
k P/

This difference scheme was applied in [6] to a nodal equation

——— v
S o e

(28)
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where a and v are constant, and v may be small. Ina solutlon comprisi
tinuous derivatives up to the 4th order the error m approx1matmg
is a quantity of the order of

T (ll + utx) + r u + r (u,\xx + ugxx)

n+l1 _

while for steady-state conditions, i.e., when u = u and all the time deriva-

tives are zero, the error will be of the order of O(l )

The stability condition for this explicit system has the form

et

For ‘our system it can be shown that the approximation will be of the same
order also for the steady regime, Stability was studied by the Fourier method
using a system of linearized equations with "frozen'" coefficients, corresponding

to (12)-(18), which describes the flow variables in regions where they vary slowly.

The stability condition for the linearized system thus obtained is similar to con~
dition (29) for one equation.

However, this condition was not always suitable for calculations, since the
shock layer has regions with extremely variable flow parameters, and hence the
spacing 7 had to be made smaller than would follow from the stability condition.

Detailed calculations performed for this problem showed that this scheme
results in the appearance of fluctuations which increase slowly with time, which,
after a very large number of time-dependent layers could entirely distort the so~
lution, To eliminate these fluctuations, smoothing was carried out in each time-
dependent layer using the expression

(2 am, = P+ OO, — A I, (30)

where 0 = § = 0,25, Since this kind of smoothing is similar to the appearance
of some fictitious viscosity, then, in order not to distort the true solution by
this viscosity, we must require that

. N
; or
! e = e

< T L= Re (31)




After smoothing was performed the fluctuations were eliminated and establish-
ment of the steady-state (""developed flow') was observed,

- We naw show how th » initial conditions are specified for:
k) B

0(n=0,m=1,

B=pet (=L a—p),
Pm=Po+ 5 (pn—05),

| B=het S (A—ha),

BY = He + - (1 - pao).

3. Results of Calculations

Calculations were performed for flow around a thermally-insulated sphere
for M =10, v =5/3, Pr =3/4 for Reynolds numbers equal to 50, 100, 500 and

1000, which characterize transition from a rarefied to a dense gas W1th gradual
formatlon of a thin shock wave.

Before starting calculations we specify some value of r (as a rule, not WA Z.ZI

greater than two sphere radii), we set l = (r —1)/k where k is the number of | \

points on the time-dependent layer, we take the time spacing 7 in accordance to N
the stability condition for the linearized system. We select §, the smoothing
parameter, from Eq, (31) e=av, a~0,1+0,5:

l

t

When solvmg the problem numerically one deals with one free parameter, i.e,

e

/78

the ratio g Reu / Re, on Whlch condltlons (11) depend. In varying tl thls parametéfi

from selectmn of the dlmensmnless quantmes) Flrst the "developed flow" prob-
lem is solved for ¢ =1, which produces some value Py

is corrected and the problem is solved again, but en“ the steady-state solution

10

!
H

#)1 Then the selected ¢ /79



for the former value of ¢ is taken as the initial conditions at t =0, The process
of selection of ; converges quite rapidly.

The external boundary r_ of the integration region should be selected so

that, on one hand, the desired functions would fit well with their asymptotic val-
ues in the incident flow, while on the other hand, r_  should not be too large be-

cause otherwise, for a given number of nodal points on the layer, the accuracy
_in determining r will be poorer. Correctness of selection of values of r was

 checked by the fact that the distance between the boundary and the body Was
increased by a factor of 2 and the problem was solved again with the same val-
ue of 7 and with twice the number of points k. In the general case the value of
r_ was a function of M __ , Re, Prandy. As a rule, for calculations to three

significant figures it is suffwlent to take 20 nodal points along r.

After selecting the maximum interval 7 (Which was found to be of the or-
der of v), which permits stable calculations for ¢ = v, it is necessary to reduce
& further until oscillations appear near the steady-state solution. The calcula-
tion with the smallest value of ¢ for which these oscillations do not appear is as-
sumed as final, The exactness of solution was checked by comparing solutions
obtained with intervals I and I/2 for the same values of r and e. Some results
of numerical calculations are shown in Figs. 2 and 3.

Figure 2a shows the steady-state as a function of &, It can be seen'how,
with a decrease in'e, the graph of p is smoothed out less, and that fluctuations'
appear on further reductlon [in &]. Figure 2b presents graphs of u for three
calculations: r =1.42 (k = 20), r =1.60 (k =20) and r  =1.84 (k =40). For

r = 1.84 velocity u becomes equal to its asymptotic value in the incident flow
practically for r = 1, 55 and for r = 1,42 function u does not approach the asymp-

tote at all, The value r = 1, 60 can be regarded as the outside boundary of the
mtegratmn region. Figure 3 illustrates the "development" of Py (t) for different
g Re /Re -

The final steady solutions are depicted in graphs of Figs., 4~-9, Figures
4 and 5 give functions u and p for all the calculated Re. These graphs describe
the structure of the shock layer and of the shock wave. It can be seen how the
shock wave zone is gradually thinned out with an increaseé in Re, Figures 6-9
depict u, v, p and P, as functions of r. For Re =50 reference should not be

made to a shock wave as such, when Re = 100 the shock wave is highly washed
out and blends with the boundary layer at the body, when Re = 500 it is already
possible to discern a region of inviscid flow inside the shock layer, while for
Re = 1000 the inviscid zone comprises a large part of the shock layer (on the
graphs u and v in this zone are almost linear), The circles in Figs, 7 and 9
denote solutions obtained by Levinsky and Yoshihara. The qualitative agree-
ment is satisfactory, while the slight deviation may well be attributed to the dif-
ference in corresponding values of Re . A sharp increase in the density near

the body is observed when Re =50 (Fig. 5). Possibly this may be attributable
to the fact that we have not considered slip at such a low Reynolds . number

11
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a) The Steady Solution as a Function of Pa-
:;;f"'—az /7 (Re = 100, ¢ =1.52, *_=1.60): 1-¢=

—‘cFO 0036, 3-.‘=0 0009, 4— €=0,00018,
b) Effect of Parameterr on the steady solution, 5 - =F =

=1,42 (K =20). 6 -r_=1.60 (K =20), 7-r_=1. 84
(K =40),
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Veloclty u for D1fferent
Reynolds Numbers.

'Figure 3. Character of
Setting of pu(t).
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possible to perform calculations for the entire shock lay or

ition from the undisturbed incoming flow to the body through the shock-wave zone.
This method is suitable also for calculations for plane as well as axisymmetric
bodles Wlth nose sectmns of nearly cyhndncal or sphemcal shape and with ther-

mstea.d of Becker 8 mtegral)

I wish to express my thanks to Z M. Yemel'yanova Who part1c:1pated in th1s z
work. j
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Re=100 ;

o ﬁigure 7. Flow Variables for Re =100 (Re_ = 16‘4“:','“1'05 v
| =1.60: 7 =0.01, K =20; 5 =0,01, n =1000).

Figure 8, Flow Variables for Re =500

14

=20, 5 =0.006, n=2800),

(Re,,=1700, r,=1.30: 7=0.001, K=

/ 80



Re =1000
R 2
\ e S
e [f ‘
1 f
_ \
Yo \
b} \ |
;§ \ a8
\
I \
& \ ]
\ \ -1q¢
P\ \ _
1
! \\
42
- \
\

| Figure 9. Flow Variables for Re=1000

(Reog"1365 ro=1,225: 1=0,. 0005, k=40,
*O 0045 n—5200)
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